
MULTIPLE STATIONARY AND MOVING BOUNDARY HANDLING IN
CARTESIAN GRIDS

Kerem Pekkan

Georgia Institute of Technology, Atlanta, GA., U.S.A. kerem.pekkan@bme.gatech.edu

ABSTRACT

A Cartesian grid generation methodology is developed for unsteady control volume computational fluid dynamic (CFD) solvers.
Arbitrary combinations and numbers of moving and stationary boundaries are allowed to exist in the two-dimensional Cartesian
grid template. Specific definitions for the possible cases, CFD solver requirements and moving geometry handling algorithms of
Cartesian grids are described. Applications are selected from bio-fluid dynamics and aerospace propulsion to demonstrate the
capability of the method.

Keywords: Cartesian grids, moving boundaries, computational fluid dynamics

When Cartesian grids are used, even in a simple two-
dimensional problem, triangular, quadrilateral and
pentagonal elements may coexist. Since the geometric
possibilities are close to unlimited a systematic approach is
necessary. Structured programming, CAD algorithms and
approaches from constructive solid geometry are employed
for the realization of this highly geometric task.

1. INTRODUCTION

Moving boundary problems of nature[1][2] and
technology[3][4][5] is an attractive research area. Besides
the trivial computational difficulties of interface movement,
additional complexity is introduced due to surfaces that are
irregular and not aligned with the orthogonal coordinate
planes. Moreover in some problems multiple stationary and
moving surface combinations can exist.

 In moving boundary problems, in addition to the
structured[6] and unstructured boundary confirming
grids[7], embedded Chimera like moving zonal
procedures[8] and level-set methods[9], Cartesian or cut-
cell techniques can be used to define the solution domain.
Cartesian grid approach is an efficient, versatile and rapid
geometry definition[10][11][12]. Grid types consist of
irregular cut-cells and uniform rectangular volumes that are
located near the boundaries and in the far field,
respectively. As will be demonstrated Cartesian grid
intersections depend on the local topological character of
the boundary curves, therefore making the Cartesian
approach problem independent and suitable for broad
research interests.

Unless a structured boundary layer grid (obtained by
normal offsetting of the boundary) and optional tetrahedral
transition elements are introduced, Cartesian grids may not
be in the best possible quality for the given application but
still can be preferred due to their high turnaround time and
wide ranges of applicable geometry. For boundaries with
many sharp corners it is another alternative to unstructured
(tetrahedral) and multi block structured grids.

Figure 1. Solution algorithm and time loop.

Fig. 1 shows the main components of a moving boundary
CFD solver that employs Cartesian grids. Details of the
grid generation routines will be described next, followed by
selected applications.

In a general problem there may be moving and solid
boundaries connected in series, as shown in Fig. 2. These
series of curves are termed as “streams.” In streams
intersection points of moving and solid curves are labeled
as “kink points”. A stream can be composed of a single
moving or solid curve. Streams are allowed to loop,
forming voids or closed bodies, with coinciding start and
end points.

2. DEFINITIONS

The Cartesian grid terminology for stationary boundaries is
quite complete in the literature[13][14]. In this section an
extension will be made to cover domains that involve
multiple stationary and moving boundaries.

A boundary curve, passing through a template cell,
intersects its sides in two points. Tracing the curve with the
solid region being on the left-hand side, first intersection is
denoted as “point 1a” and second as “point 2a.” Cell
intersection points are stored with respect to coordinates
relative to the cell.

In Fig. 2, a rectangular “template” containing stationary
(solid) and moving boundaries, having five and seven
“square cells” along x- and y- directions is plotted. Given
the length and width of the template, integer number of
square grids can be generated inside. Template boundary
sides are termed as EAST, WEST, SOUTH and NORTH,
where inflow/outflow, reflective, transmissive, injecting,
moving wall boundary conditions can be specified. Also for
the side of any cell inside the template, a boundary
condition can be assigned when needed for specific
applications.

If number of intersection points in a cell exceeds two, cell
types that are not covered by the solvers’ cell-type-domain
may appear. These cells need special treatment and named
as “degenerate cells” in the Cartesian literature [13]. In that
case, extra intersection points will be labeled and stored as
“point 1b” and “point 2b,” to be used in degenerate cell
handling routines, §3.7 A simple degenerate cell example is
given in Fig. 2.

In all problems, solid and moving walls are bordering the
flow field of interest. “Curves” that form the boundaries of
solid/moving walls are specified as line segments, in an
order so that when the curve parameter increases, solid
bodies are always on the left.

3. CARTESIAN GRID GENERATION
ROUTINES

Cartesian Grid Solvers does not require a separate grid

0 1 2 3 4 5 6 7
i

1

2

3

4

j

(i, j)

uy

ux

Intersection with
Vertical Grid Lines

Intersection
with
Horizontal
Grid Lines1

2

5

1 Stream
Start

2 Stream
EndA DEGENERATE CELL with

four intersection points. The
intersecting segments are of
different type. Segment 1a-2a is
a moving curve, where as
segment 1b-2b is solid.

1a
2a 1b

2b

1a

2a
1a

2a

Cell Intersection Search Region

Cell Intersection Points

Solid or Moving Curve. Its
direction is from "1" to "2".

Template Boundaries with 7x5
cells Kink Points

Stream. Defines the flow
boundaries

Coordinates are relative to
cell

uy, ux:

A closed solid body with
moving boundaries

A closed solid body with
stationary boundaries

1a, 2a Start and end points of the
first cut segment

1b, 2b Start and end points of the
second cut segment

1
0

1

Figure 2. Terminology for cell intersections

generator program, while for arbitrary moving complex
geometries; generation of the template grids and finding
local intersections is a complicated geometric task.

Unlike boundary-conforming grids where global re-
meshing, at each time step, alters the positions of grid
points, Cartesian grid points are stationary. Thus for
Cartesian control volumes that are not cut by a moving
boundary, a geometric conservation law or Jacobian
transformations is not needed.

3.1 Modeling Solid/Moving Wall Boundaries
Curves that form the boundaries of solid or moving walls
are approximated with line segments. A line segment is the
lowest object of the stream structure. It is defined by the
parametric equation of straight line. Parametric
representation of line segments is found useful especially in
finding cell intersections. For this type of representation
position vectors of the start and end points of the straight
line are needed. A single curve parameter defines the
position of any point on the line segment. Segment center
velocity and its magnitude are also stored to allow for
variable offsetting along a moving curve types.

The curve structure used in the code composed of the line
segments, number of line segments that make up the curve
and type of curve, which may be moving or solid. Line
segment sequence of each solid/moving curve is arranged
so that solid bodies are always on left. The geometric
information of the input curves are kept in the following
structure:
struct curve {
 struct line seg[N_SEGMT] ;
 int type ; /* SOLID or MOVE */
 int n_segmt ; /* end indis of seg[] */
 };

3.2 Cell Size and Number of Cartesian Grid
Lines
Since the domain is rectangular and the cells are square,
number of grid lines in x- and y- directions is dependent on
each other. First the minimum number of grids in each
direction is calculated, which is the coarsest possible grid
for the given template dimensions. Then, if an extra
refinement is required, number of grids is increased in both
directions with the same ratio. If the template side
dimensions are not whole numbers, then they should be
expressed in rational form, i.e. numerator over
denominator. In that case, to calculate cell size and
template grid line locations accurately, integer arithmetic
needs to be performed.

3.3 Finding Streams
A general geometry is composed of arbitrary number of
solid and moving curves. At the start of the problem, i.e. at
initial state, some part of the solid boundaries may be
covered with moving curves and may not saw the flow
region. For a regressing material this situation is sketched
in Fig. 3. As the solution proceeds, these solid boundaries
will expose out and start affecting the flow. To obtain the

transient solution without any restart, at each time step the
flow boundaries should be identified. Curves defining flow
boundaries or wetted areas are called “streams” and the
corresponding process is called “stream generation.”

 A

REGRESSING
MATERIAL

SOLID
BODY

FLOW
REGION

B

a

b

c e

d

1 2

time = t

t + delta t

Figure 3. A Solid Boundary Exposing out Which is
Initially Covered with a Regressing Material. (A-B
is the Stream at Time t. a-b.b-c.c-d.d-e is the
Stream at a Later Time.)

In Fig 3, initially there is one moving curve (A-B) and one
solid curve (1-c.c-2). Solid curve is composed of two line
segments and the initial stream is made up of the moving
curve (A-B) only. As the boundary moves, at a later time
step the number of moving curves increases to two. The
stream is now made up of three curves (a-b, b-c.c-d, d-e).
In a general problem the number of streams may be more
than one. Algorithms developed in this study allow
multiple streams, cover situations involving merging and
break-up of moving boundaries and can also generate loop
streams.

If there are no moving walls and all of the geometry that
defines fluid boundaries is solid, then each solid wall is
assigned as a new stream. If there are moving walls, new
streams are generated by tracing moving and solid curves
alternatively. In this trace, “A stream can form a closed
loop or start and end at a template boundary” is the basic
rule. Until this rule is satisfied, each trimmed/extended
moving curve is traced first in its start direction and then
towards its end. During these traces, intersections with
other curves will be detected. Each new detected curve
during this trace is kept in the order as a member of the
generated stream. Boundaries that form loops can also be
detected by this procedure.

3.4 Cartesian Cell Intersections
The basic geometry is illustrated in Fig 1. For each line
segment, of each stream, intersections with vertical and
horizontal grid lines are searched. If an intersection is
found, intersection point and its type (moving or solid) are
stored in the cell structure relative to cell coordinates. The
coordinates should be specified relative to square cells
because of the accuracy considerations. This algorithm is
different than the one proposed in [1]. In that study
boundary curves were traced and cell coordinates are

1

2

CUT2S
CUT2M
KINK2

COND 1:
COND 2:

1
2

A
1

2

B
1

2

D

1

2
C

E V2 V2 E
W V1 W V1

N V3 V3 N
S V2 S V2

S V1 V1 S
N V4 N V4

W V4 V4 W
E V3 E V3

1

2

CUT1S
CUT1M
KINK1

COND 1:
COND 2:

1

2

A
1

2

B

1

2

D

1

2
C

S
W

N
E

W
N

E
S

1

2

CUT3S
CUT3M
KINK3

COND 1:
COND 2:

1

2
A

1

2

B

1

2

D
1

2

C

E V2 E V2
N V4 V4 N

W V4 W V4
S V2 V2 S

N V3 V3 N
W V1 W V1

S V1 V1 S
E V3 E V3

 defined as integer variables taking discrete values to
overcome the accuracy problem. The intersection routine
that is developed here considers the sense of each line
segment and differentiates different cases. Including
specific orientations of segments, like cases parallel to
Cartesian grid lines. Two intersections are allowed and
typical for each Cartesian cell. If more than two
intersections are found, their positions are stored for
degenerate cell considerations.

1

2 3

1

2

CUT FULL FLOW SOLID KINK
Line segment
1-2 is solid or

moving.

Line segment
1-3 is moving

and 3-2 is solid

Figure 4. Basic cell types (SOLID, FULFLOW,
CUT-M/S, KINK)

Figure 5. Cell sides (E, W, S, N) and four corner
vertices (V1, V2, V3, V4) are labeled, defining the
possible locations of the intersection points.

For geometries involving moving and solid boundaries,
there are five basic cell types. These are: full flow, solid,
cut-solid, cut-move and kink cells, Fig. 4. Cut cells contain
a single curve segment, which may be moving or
stationary. Kink cells are cut cells where a solid curve ends
and a moving curve starts or vice versa. The same
convention also holds for segments inside cells: the solid
part is on left, in the direction of curve parameter increase.

3.6 Cell Sub-Types
The intersection type (cut segment crossing whether in or
out of the Cartesian cell), and the cell side each intersection
point is located determine the cell sub-type. As a solver
convention, these sub-types are grouped and presented in
Fig. 5. Depending on the conditions given in Fig 5, the
solver differentiates 48 different cell sub-types. Although
only cut-moving/solid (CUT-M/S) cells are drawn, for each
cut cell sub-type there is also a corresponding KINK cell
with intersection points at the same locations. In that case
the kink point, point-3 in Fig. 4, is located at an arbitrary
position inside the Cartesian cell.

3.5 Cell Structure
In the solution domain each square formed by the grid lines
defines a control volume, named as cell. Number of cells
are equal to the number of grids. For each cell, besides flow
variables the following information is also stored:

• Basic cell type (Fig. 4) 3.7 Degenerate Cells
• Cell sub-type (Fig. 5) In the solution domain, if arbitrary intersections with the

input geometry are allowed, some cells that are not
recognized by the Cartesian solver may appear. These cells
are named as “degenerate cells” in the Cartesian literature.
(A simple example is a cell with more than two
intersections, Fig. 2)

• Position vector of first and second intersection
points.

• Intersection types of first and second intersections.
(Which depends whether the cell is intersected at that
point by a solid or a moving curve.)

• Position vector of first and second degenerate
intersection points and their types. PROBLEM TYPE NUMBER of UNIT

GEOMETRIES

P1 32
P2 8
P3 64

P4diagonal 16
P4 88

• Position vector of the kink point.

• List number that the cell is combined.

• Cell area.

• Position of cell center.

Table 1. Number of possible unit geometries for
each degenerate cell problem type.

• The boundary condition specified for any of the cell
sides.

By increasing grid size or slightly shifting the input
geometry some of the problematic cases can be overcomed.
However such remedies work only for bodies that are not
moving. For applications involving continuously changing
shapes and offsetting, these problematic geometries must
be identified and suitably approximated.

Depending on the number of intersections in the degenerate
Cartesian cell, geometrically possible problem types can be
grouped in to four. These problem topologies will be
labeled as P1, P2, P3 and P4 cells (With one, two, three and
four intersections in a Cartesian cell respectively.) For each
problem type, the rotations and symmetries of the basic
geometry should be considered, together with the type
(moving or solid), of the intersecting boundary. The total
number of unit operations that is taken into account for
each problem type is given in Table 1.

P1 PROBLEM

P1

(cell s) (cell se)

1

2

(cell c)

1a only 1a2a
1a

2a 1a

2a

(cell e)
P1

(cell s) (cell se)

1

2

(cell c)
1a only 1a2a
1a

2a

(cell e)

1a

2a
1a 2a

Basic Geometry Ia Basic Geometry IIa
1

2

2a only
P1

(cell c)
(cell e)

(cell n)

Basic Geometry Ib Basic Geometry IIb

P1

(cell n)

(cell ne)

(cell c)
(cell e)

1

2
2a only 1a 2a

1a2a

1a
2a

 P2 AND P4 PROBLEMS

1 SOLID

2 SOLID
P2

All P2 cells, whether their
intersecting line segment
type is same or different, are
marked as FULL FLOW.
(cell a)

1 SOLID

2 MOVE
P4

1 SOLID

2 SOLID

All P4 cells, that has the
following points (1b and 2a)
and (1a and 2b) placed in
opposite sides are marked
as FULL FLOW or SOLID.
(cell b, d, e, g)

P4P4

1a2a

2b

1b

(cell d)
(cell e)

P4
P4

1a2a

1b

(cell g) (cell h)

2b

(cell f)
KINK

P4 cells that 1a and 2b
points are placed on
different sides and 1b and
2a are placed on the same
side, make boundary
approximation.
(cell h, c, f)

P4 P4
(cell b) (cell c)

1a
2a

2b
1b

(cell a)

Figure 8. P1 problem: P1 problem is possible if the
segments that make a sharp corner are of the same type
and one of the segments coincide with the template grid
lines. There are two basic geometry types. (And each
type has two variations, a and b) For the basic geometry
type 1a (top left figure), the ambiguity in cell
intersections is corrected by; Mark (cell c) and (cell s) as
FULL FLOW. Move Point 1a of (cell se) to Point 2a of
(cell e). Each of the four plotted topologies has also four
different orientations depending on the position of the
cell that is marked 1a/2a-only.

To disclose the scope of the work some examples of the
primary geometries and rules that are used in the code are
given in the Figs. 6, 7 and 8. For degenerate cells with
intersections of different curve types (solid/move),
approximated geometry is sharp and defines a kink type of
cell. Without considering these topologies a general
moving body Cartesian solver is not possible.

Figure 6. P2 and P4 type degenerate cells: In all figures
dashed lines represent the final approximated boundary
after degenerate cell corrections. Both line segments
are of same type (Both MOVE and both SOLIDS). For the
definitions of cell intersection points: 1a, 2a, 1b and 2b
refer to Fig. 2.

3.8 Marking Solid Cells
Procedures describe in the previous sections specify the
geometric properties for each cut cell in the solution
domain. The remaining cells are either solid or full flow.
For solid cells, no flow solution is needed. Therefore they
must be distinguished from the fluid flow cells before
starting the solution.

1

P4Scc

P4Scc

Basic Geometry C-B
(Same Type)

Converging From
Corner-NW Towards

Corner-SE

1a 1b

2b
1

2

2a

Basic Geometry
(Same Type)

1a

1b

2b

1

2

2a

Basic Geometry C-B
(Different Types)
Converging From

Corner-NW Towards
Corner-SE

1a 1b

2b
1

2

2a

Basic Geometry
(Different Types)

1a

1b

2b

1

2

2a

Basic Geometry C-B
(Same Type)

Converging From
Corner-SE Towards

Corner-NW

Basic Geometry
(Same Type)

1a 1b

2b

2

2a

2
1

1a

2a

1b

2b

Basic Geometry C-B
(Different Types)
Converging From

Corner-SE Towards
Corner-NW

Basic Geometry
(Different Types)

1a 1b

2b

2

2a

2
1

1a

2a

1b

2b

1

The procedure that is used is similar to the one used in [1].
All the Cartesian cells are traced first horizontally and then
vertically. During each trace, cell type does not changed
until, a cut cell is reached, and at that cell, the marking type
is reversed and switched to either FULFLOW or SOLID.
The tracing proceeds with this marking type afterwards. By
taking into account the detected cut cell sub-type, initial
cell type assumption and previous type marks are corrected.
The algorithm is tested in various geometries and found to
be working flawlessly in all cases considered so far.

The solid cell marking procedure of [1] does not take the
cut cell sub-type into account. For this reason an extra
trace, either in horizontal or vertical direction is needed.
Even with this extra trace, ambiguous geometries are still
possible. In this study since in marking type switches,

Figure 7. Diagonal P4 problem -one of the four sub-
types. The four cases that are shown on the left are
same type of curve intersections. Different type
intersections are plotted on right.

For all the combined cells in the template, cell states are
area-averaged, area and cell center of the combined cells
are found. A different list number is assigned to each
combination.

depending on the cut cell sub-type initial cell type
assumption is corrected and the number of horizontal and
vertical traces are decreased to two.

In Fig. 10, Cartesian grid Information for various template
locations of the letters ‘S’ and ‘A’ are plotted. Close-up
regions demonstrate some critical locations and treatment
of degenerate cells. The numbers shown on Cartesian cell
centers, represent the combination list that the cell belongs.
F, C and S stand for FULLFLOW, CUT and SOLID
respectively. Due to the boundary movement, cell
information is regenerated at each time step.

3.9 Cell Combinations
Intersections of arbitrary line segments may produce tiny
cells, which minimize the time step size. If a fast Cartesian
solver is the aim, these tiny cells must be combined and
treated as a single control volume. The segment mid-point
normal rule [1] is practiced here. Which will be referred as
the best combination.

CELL (i, j)

CELL (i, j+1)

CELL (i+1, j)CELL (i-1, j)

1

2
3.10 Boundary Offsetting, End
Trimming/Extending

Prior to the next time step, segment center points are
displaced in the wall velocity direction, for cells that
contain a moving type cut segment,. New curve points for
the moving wall are generated without loosing the curve
parameter sense. Curves that form loops are separately
detected and displaced. Moving curve ends are trimmed or
extended to a nearest solid wall or a template boundary.

Figure 9. Cell (i, j) is combined with the first of the two
alternatives.
Around confined regions and for cut cells with neighboring
template boundaries, the best possible combination may not
exist or the planned combination may produce an undesired
size increase that decreases the local spatial accuracy. In
order to acquire a consistent control volume size as much
as possible, throughout the template, maximum three
alternatives of the four neighboring cells are returned to the
code in the order of the best combination possibility. In
cases when the best combination cell does not exist other
alternatives are considered in order, Fig. 9.

At the end of the trimming and extending process, each
moving curve should start from or end at a solid boundary
/template side, or form a loop, so that the stream generation
algorithms that are discussed in the previous sections can
trace the moving and solid curves without any breaks.

F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F

F F F F F 9 16 C C C 29 32 F F F

F F F F 6 9 16 S S S 29 32 C C F

F F F C 6 S S S S S S S S C F

F F 1 1 S S S 20 20 25 30 S S 40 40

F F C S S 10 10 10 20 25 30 33 S S 44

F 0 0 S S 11 11 F F F F 33 S S 45

F F C 2 7 C F F F F F C S S 46

F F F 2 7 F F F 22 26 34 34 S S 47

F F F F F 12 17 C 22 26 S S S S C

F F F F 8 12 17 S S S S S S 41 41

F F F C 8 S S S S S S 35 38 C F

F F 3 3 S S S S 23 27 C 35 38 F F

4 6 8
3

4

5

6

7

8

F F F 95 95 S S S S S S S S S S S

F F F F C S S S 106 111 115 117 122 S S 13

F F F F 97 97 S S 106 111 115 117 122 S S C

F F F F 98 98 S S 107 107 F C S S 130 13

F F F F F C S S 108 108 118 118 S S 131 13

F F F F F 101 101 S S C 119 119 S S C F

F F F F F 102 102 S S 112 112 S S 126 126 F

F F F F F F C S S 113 113 S S 127 127 F

F F F F F F 104 104 S S S S S C F F

F F F F F F 105 105 S S S S 123 123 F F

F F F F F F F C S S S S 124 124 F F

F F F F F F F 109 109 S S 120 120 F F F

F F F F F F F F C C C C F F F F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F

16 17 18 19 20 21

7

8

9

10

11

 Figure 10. Cell type and combination information. Lower left corner of letter “S” and top right of letter “A”.

4. MOVING WALL EXAMPLES As the result of detailed considerations of degenerate cells,
some simple merging and break up situations can be
detected, without any extra merge/break-up routines.
Break-up region is realized by marking some degenerate
cells as full flow. Fig. 12 demonstrates an offsetting
sequence leading to break-up. Template is square of side 8
mm. Offset velocity is 2.5mm/s and grid size is 46x46.

Geometry handling and moving wall-offsetting functions
will be demonstrated via three examples. Geometric
problems encountered during normal offsetting involve
edge separation and degenerative close loops. These are
related to the local curvature and offsetting distance. For
the following examples wall offset velocity is constant. Wall offsetting accuracy can be assessed by comparing

 flow area vs. perimeter plots. For an expanding and
acting circular body, Fig 13, such plots are generated
o grid sizes. A difference of ~10% is observed for the

ted coarse grid, Fig 14. The circular body is initially
sented by a 20-segment polygon and wall speed was
ant. Increasing the grid size 1/3 resulted closer values.

Cartesian mesh
100x100

Initial Curve
20 segment Polygon

Cartesian mesh
100x100

Initial Curve
20 segment Polygon
exact
contr
for tw
selec
repre
const

 Figure 11. Offsetting in a Cartesian template. One of
g the four consecutive time steps are plotted
Fig. 11 is a regressing diameter pipe with an arbitrary
shape. This geometry is selected because of its high convex
curvatures, which may cause problems in geometry
dependent offsetting codes.

Figure 13. Contracting circle in 100x100 grid. Wall Speed
5 units/sec, Template size 4 units square, Time step 0.001
sec. (Part of the mesh is shown)

Break-up Region time = 0.147 s.

Break-up Region time = 0.1485 s.

Figure 12. Break-up of an arbitrary solid body. Demonstrating the degenerate cell handling procedures and stream formation.
The initial geometry is drawn using thick lines. Not all the zones are plotted. During break-up, time step is modified

Expanding

Contracting

0.5 Units Radius
Expanding-Contracting Circle
(Area vs. Perimeter Plot)

EXACT

GRID SIZE
100x100

GRID SIZE
150x150

Expanding

Contracting

0.5 Units Radius
Expanding-Contracting Circle
(Area vs. Perimeter Plot)

EXACT

GRID SIZE
100x100

GRID SIZE
150x150

Expanding

Contracting

Expanding

Contracting

0.5 Units Radius
Expanding-Contracting Circle
(Area vs. Perimeter Plot)

EXACT

GRID SIZE
100x100

GRID SIZE
150x150

REFERENCES

[1] M. S. Triantafyllou, G. S. Triantafyllou,

“Hydrodynamics of Fishlike Swimming,” Annual
Review of Fluid Mechanics, Vol. 33 pp.33-53 (2000)

[2] Zhi B. Gao, et. al., “Bioprosthetic Heart Valve Leaflet
Motion Monitored by Dual Camera Stereo
Photogrammetry,” Journal of Biomechanics, Vol.33
pp.199-207 (2000)

[3] K. Pekkan, A. Ucer, “A 2D Moving Boundary
Cartesian Grid Solver for Internal Flow Fields of
SPRM’s,” Advances in Rocket Performance, Life and
Disposal, RTO Specialists Meeting NATO-AVT-089,
Denmark, (2002)

[4] Ravi Ramamurti, “Simulation of Flow about Flapping
Airfoils Using Finite Element Incompressible Solver,”
AIAA Journal, Vol 39(2) p.8 (2001)

[5] K. Stein, R. Benney, T. Tezduyar, J. Potvin, “Fluid-
Structure Interactions of a Cross Parachute: Numerical
Simulation,” Computer Methods in Applied Mechanics
and Engineering, Vol 191, pp. 673-687 (2001)

[6] W. Shyy, H. S. Udaykumar, M. M. Rao, R. W. Smith,
Computational Fluid Dynamics with Moving
Boundaries, Taylor-Francis, (1996)

[7] P. I. Crumpton, B. Giles, “Implicit Time-Accurate
Solutions on Unstructured Dynamic Grids”,
International Journal for Numerical Methods in
Fluids, Vol 25 pp.1285-1300 (1997)

[8] Kozo Fujii, “Unified Zonal Method Based on the
Fortified Solution Algorithm”,Journal of
Computational Physics , Vol 118 pp.92-108 (1995)

[9] J. E. Sethian, Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision and
Materials Science, Cambridge University Press, (1999)

[10] Randall J. LeVeque, Donna Calhoun, “Cartesian Grid
Methods for Fluid Flow in Complex Geometries,”
Computational Modeling in Biological Fluid
Dynamics, IMA Vol. 124, Eds. Lisa J. Fauci and Shay
Gueron, Springer-Verlag, (1999)

[11] H. Forrer, R. Jeltsch, “A higher-order boundary
treatment for Cartesian-grid methods,” Journal of
Computational Physics, Vol.140 pp.259-277 (1998)

[12] H. Johansen, P. A. Colella, “A Cartesian grid
embedded boundary method for Poisson’s equation on
irregular domains,” Journal of Computational Physics,
Vol.147 pp.60-85 (1998)

[13] J. J. Quirk, “ An alternative to unstructured grids for
computing gas dynamic flows around arbitrarily
complex two-dimensional bodies,” Computers and
Fluids, Vol.23(1) pp.125-142 (1994)

[14] M. J. Aftosmis, J. E. Melton, M. J. Berger, “Adaptation
and surface modeling for Cartesian mesh methods;”
AIAA Paper 95-1725-CP, pp.881-891 (1995) Figure 14. Area vs. Perimeter comparison for an

expanding-contracting flow area.

	ABSTRACT
	1. INTRODUCTION
	2. DEFINITIONS
	3. CARTESIAN GRID GENERATION ROUTINES
	3.1 Modeling Solid/Moving Wall Boundaries
	3.2 Cell Size and Number of Cartesian Grid Lines
	3.3 Finding Streams
	3.4 Cartesian Cell Intersections
	3.5 Cell Structure
	3.6 Cell Sub-Types
	3.7 Degenerate Cells
	
	PROBLEM TYPE
	NUMBER of UNIT GEOMETRIES

	To disclose the scope of the work some examples of the primary geometries and rules that are used in the code are given in the Figs. 6, 7 and 8. For degenerate cells with intersections of different curve types (solid/move), approximated geometry is sha

	3.8 Marking Solid Cells
	3.9 Cell Combinations
	3.10 Boundary Offsetting, End Trimming/Extending

	4. MOVING WALL EXAMPLES
	REFERENCES

